Skip to main content

Posts

Showing posts from March, 2013

Accenture Sample Problems On Speed

Below are three problems dealing with speed and time calculations.

Question 1
Two buses leaving from two stations 20 km away from each other travel with constant speed of 45km/hr towards each other.Find the time taken to cross each other if the length of each bus is 100m.
a)10sec b)4sec c)15sec d)20sec
Answer : b)4sec
Solution :
The time taken to cross each other = (a + b) / (u + v) sec.
Here, a = b = length of the two buses = 100m = 1/10 km.
and u = v = speed of the two buses = 45km/hr.
Time taken to cross each other = (a + b) / (u + v) sec = (1/10 + 1/10) / (45 + 45) hours
1 / (10 x 90) = 1/900 hours.
since 1 hour = 3600 sec, 1/900 hour = 3600/900 = 4 sec
Hence the answer is 4 sec.

Question 2
A bus starts from A at 7 a.m and reaches the destination B at 7.30 a.m while a cyclist starts from B at 7 a.m and reaches A at 8.30 a.m. At what time the bus and the cyclist will cross each other?
a)7.34 a.m b)7.49 a.m c)7.23 a.m d)8.01 a.m
Answer : c)7.23a.m
Solution :
Let the distance …

Wipro Sample Algebraic Problems

Below are three model problems dealing with the formulae (x+y)2 = x2 + y2 + 2xy and (x-y)2 = x2 + y2 - 2xy
Question 1
Find X when X - Y = 3 and X2 + Y2 = 89 where X and Y are integers.
a)10 b)-5 c)-10 d)-3
Answer : b)-5.
Solution :
We know that (x - y)2 = x2 + y2 - 2xy
Sub. the given values,
32 = 89 - 2XY
9 - 89 = -2XY
80 = 2XY
XY = 40
Since X and Y are integers and XY = 40,the possibilities of X and Y are as follows:
(1,40), (2,20), (4,10), (5,8), (-1,-40), (-2,-20), (-4,-10) and (-5,-8)
X - Y is a positive integer(3), so X will be greater than Y.
By checking the given condition X - Y = 3, we have X = 8, Y = 5 or X = -5, Y = -8.
i.e., X is either 8 or -5.
From the given options we can conclude that X = -5.
Question 2
If the summation and multiplication of two integer is 24 and 143 respectively then the difference of them is:
a)2 b)1 c)12 d)4
Answer : a)2
Solution :
Let A and B be two integers.
Then A + B = 24 and AB = 143.
We know that (x+y)2 = x2 + y2 + 2xy
Here, 242 = A2 + B2 + 2(143…