What is Encapsulation

Encapsulation in the mechanism that binds together code and data and that leaps both safe from outside interference or misuse. It also allows the creation of an object. More simply, an object in a logical entity that encapsulate both data and the code that manipulators that data.
Within an object, some of the code and/ or data may be private to the objected and in accessible to anything outside the object. In this way and object provides a significant level of protection against some other unrelated part of the program accidentally modifying or incorrectly using the private parts of the object.

What is Data abstraction in oop

The wrapping up of data and functions into a single unit (called class) is known as encapsulation. Data encapsulation is the most striking feature of a class. The data is not accessible to the outside world and only those functions which are wrapped in the class can access it. These functions provide the interface between the object’s data and the program. This insulation of the data from direct access by the program is called ‘data hiding‘.
Abstraction refers to the act of representing essential features without including the background details or explanations. Classes use the concept of abstraction and are defined as a list of abstract attributes such as size, weight and cost, and functions to operate on these attributes. They encapsulate al1 the essential properties of the objects that are to be created. Since the classes use the concept of data abstraction, they are known as Abstract Data Types (ADT).

Matrices: An introduction

This tutorial discusses some of the ins and outs of matrices. Matrices can be fun, but more importantly, they can really save you time. 
A matrix is, by definition, a rectangular array of numeric or algebraic quantities which are subject to mathematical operations. Matrices can be defined in terms of their dimensions (number of rows and columns). Let us take a look at a matrix with 4 rows and 3 columns (we denote it as a 4×3 matrix and call it A):
Each individual item in a matrix is called a cell, and can be denoted by the particular row and column it resides in. For instance, in matrix A, element a32 can be found where the 3rd row and the 2nd column intersect.
What are they used for?
Matrices are used to represent complicated or time-consuming mathematical operations. A single matrix can hold an infinite number of calculations, which can then be applied to a number, vector, or another matrix. There are several operations that can be done on matrices, including addition, multiplication and inverse calculation; some of which will be discussed shortly. Operations done on one matrix can be transferred to another matrix simply by concatenating the two (by matrix multiplication). Matrices often find their use in 3 dimensional applications, were numerous identical operations are performed on thousands of vectors 30 or 40 times a second. Combining all these operations in one single matrix significantly improves the speed and functionality of a 3D rendering pipeline. Matrices are also used in financial processes (again, where a large number of data has to be processed in a similar fashion).
Operations on Matrices
1.Addition and Subtraction
Addition and subtraction operations can easily be performed on matrices, provided the matrices have the same dimensions. All that is required is to add or subtract the corresponding cells of each matrix involved in the operation. Let us take a look at the addition of two 2×3 matrices, A and B:
2.Scalar Multiplication
Multiplying a matrix by a scalar value involves multiplying every element of the matrix by that value. Here we multiply our 2×3 matrix A by a scalar value β:
3.Matrix Multiplication
The multiplication operation on matrices differs significantly from its real counterpart. One major difference is that multiplication can be performed on matrices with different dimensions. The first restriction is that the first matrix has to have the same amount of columns as the second has rows. The reason for this will become clear shortly. Another thing to note is that matrix multiplication is not commutative i.e., (CD) does not equal (DC).
The procedure for matrix multiplication is rather simple. First, we determine the dimensions of the resultant matrix. All we require is that there are as many columns in the first matrix as there are rows in the second. A simple way of determining is to look at the nearest and farthest dimensions of two matrix symbols written next to each other, for instance: C[2x3D[3x2]. The nearest dimensions are both equal to 3, and so we know that the operation is possible. The farthest dimensions will give us the dimensions of the product matrix, so our result will be a 2×2 matrix. The general rule says that in order to perform the multiplication AB, where A is a (m x n) matrix and B a (k x l) matrix, we must have n=k. The result will be a (m x l) matrix.
Performing the operation product involves multiplying the cells of a particular rows in the first matrix by the cells of a particular column in the second matrix, adding the products, and storing the result in the cell of the resultant matrix whose coordinates correspond to the row of the first matrix and the column of the second matrix. For instance, in AB = C, if we want to find the value of c12, we must multiply the cells of row 1 in the first matrix by the cells of column 2 in the second matrix and sum the results.
4.Matrix/Vector Multiplication
We can also multiply matrices and vectors together, since a vector is nothing more than a 1-column matrix. Consider a 4×4 matrix M which comprises an arbitrary number of transformations (rotation, scaling, translation, etc.) which are to be applied to a 4×1 vector, S. The resultant 4×1 vector R obtained by multiplying M and S together is then a transformation of S.
5.Coding with matrices
How do we define a matrix in C++ you ask? Simple. If a matrix is a two dimensional array of numbers, by definition, then we should be able to define it in C++ that way too. Here’s how:
typedef float MATRIX[4][4]; // A 4×4 matrix
The simplest thing you would want to do is concatenate (multiply) two matrices. We perform the operation, as mentioned earlier, like so:
// matmult: Multiplies matrices A and B, storing the result in A
void matmult(MATRIX &A, MATRIX B)

MATRIX conc;
// Multiplies by rows and columns
for (int i = 0; i <4; i++)
for (int j = 0; j < 4; j++)

conc[i][j] =
(A[0][j] * B[i][0])+
(A[1][j] * B[i][1])+
(A[2][j] * B[i][2])+
(A[3][j] * B[i][3]);

// Copy result matrix into matrix A
for (int p = 0; p < 4; p++)
for (int q = 0; q < 4; q++)
a[p][q] = conc[p][q];
Note: The code references cell yx as cell xy. This may be changed in the near future for the sake of clarity.
You also need to initialize a matrix before you begin to work with it (unless you are simply copying from one matrix to another). Here’s the code to do so:
// matinit: Initializes a matrix, and sets to 'identity'
void matinit(MATRIX &a)

for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
a[i][j] = 0.0f;
a[0][0] = 1.0f;

a[1][1] = 1.0f;
a[2][2] = 1.0f;
a[3][3] = 1.0f;
Note: The code references cell yx as cell xy. This may be changed in the near future for the sake of clarity.
Matrices are essentially useless unless you apply them to something. In 3D programming, you would want to apply them to vectors. By applying say, a rotation matrix, to a vector, we can rotate that vector around the origin in 3D space. 3D vectors are simply 3×1 matrices. Here is the code to do so:
// vecmatmult: Multiplies vector V and matrix B
void vecmatmult(VECTOR &v, MATRIX b)

float x, y, z, w = 1;
x = (v.x * b[0][0]) + (v.y * b[0][1]) + (v.z * b[0][2]) + (w * b[0][3]);
y = (v.x * b[1][0]) + (v.y * b[1][1]) + (v.z * b[1][2]) + (w * b[1][3]);
z = (v.x * b[2][0]) + (v.y * b[2][1]) + (v.z * b[2][2]) + (w * b[2][3]);

v.x = x;
v.y = y;
v.z = z;
Note: The code references cell yx as cell xy. This may be changed in the near future for the sake of clarity.
What is w you ask? The w is simply to accommodate the translation cells, since the vector is only 3×1 and the matrix is 4×4.
Useful matrices
Here are a couple of useful matrices that you can use. Most of them are for 3D geometry and are 4×4 matrices. I will add some more in the near future and also show how they are derived. Here they are:
The identity matrix is a matrix that does not affect the contents stored in another matrix when multiplied. It can be used as a basis for for constructing other matrices. An identity matrix can be any size, as long as it’s diagonal consists of 1’s and all other cells are filled with zeros, as shown:
The translation matrix is a matrix that can be used to translate vectors, such points, in n-dimensional space. Here, translations are for 3-dimensional space, where tx, ty and tz relate to displacements in the x, y and z dimensions respectively. Each component of the translation is added to it’s respective vector component. Notice how this matrix is based on the identity matrix:
The scaling matrix is a matrix that can be used to scale vectors, such points, in n-dimensional space. Here, scaling values are for 3-dimensional space, where sx, sy and sz relate to scaling factors in the x, y and z dimensions respectively. Notice, once again, how this matrix is based on the identity matrix:
The x-rotation matrix is a matrix that can be used to rotate vectors around the x-axis in 3-dimensional space. Theta (q) is the angle at which the vector is rotated. Lets look at how this matrix is derived:
The process of rotating a vector around the x-axis in 3D space is as follows:
x’ = x
y’ = (y*cosq) + (z*sinq)
z’ = (z*-sinq) - (y*cosq)
When applying this matrix to a vector (by means of a dot product), each of those transformations is only applied once, to the appropriate vector component. Again, these matrices are based on the identity matrix:
The y-rotation matrix is a matrix that can be used to rotate vectors around the y-axis in 3-dimensional space. Theta (q) is the angle at which the vector is rotated. Lets look at how this matrix is derived:
Here, the process of rotation is similar to that of the x-rotation matrix:
x’ = (x*cosq) - (z*sinq)
y’ = y
z’ = (x*sinq) + (z*cosq)
Here is the matrix:
The z-rotation matrix is a matrix that can be used to rotate vectors around the z-axis in 3-dimensional space. Again, theta (q) is the angle at which the vector is rotated. Lets look at a simple derivation:
Here, the process of rotation is similar to that of the x-rotation matrix:
x’ = (x*cosq) + (y*sinq)
y’ = -(x*sinq) + (y*cosq)
z’ = z
Here it is:


10th 3i InfoTech Academic Books Accenture ACIO ActiveX ADT Agricultural AIEEE Air Force Algebraic Amdocs Android Answers Application Development Aptitude Aptitude Questions Architectures ASP ATOS B.Sc B.Tech.B.E. Bank Exam BCA BE Board Exam Books break-continue Business Plan C C Programming C# C++ Campus campus interview Candidate profile Capgemini Career CDS Certification CET Challenge Circle Cisco class code Cognizant communication Company Company Profile Competitive Exams computer Computer Networks concentric circles constructor Course Credit Suisse CSS CTS Data Structure DBMS DC Deloitte difficult interview questions dimensions Distributed Computing do while dotNet Download ds Dynamic Web Development e-Admit card Educational engineering entertainment Even Odd Events exam schedule exception for loop fresher GATE general Discussion general knowledge Get Placed Government Job Hall Ticket HCL how to answer How to Prepare HR HR Interview HSC hypertext preprocessor IB IBM IBPS IIT Indian Army Information infosys Intelligence Bureau Internship interview Experience interview questions Interview Tips IntroC IntroC# IntroJava IntroPHP IT J2EE J2ME Java JavaScript jobs Language Books Language Tutorial Languages limit number of objectsJava Limit the number of objects being created in JAVA Linux Linux Administrator Linux Developer Logical Questions loops M Tech M.E. M.Tech M.Tech AND B.Tech Management Management Skills Matrices MBA mca ME microsoft mistakes Mixture Mobile Computing mock questions mock test MySql naukri NDA OOP opening Operating System Oracle paper Persistent PHP php programming php string variables PL/SQL Placement placement guide Placement Paper Placement Process preparing for placement presentation probability Problems Professional program Programming Project Engineer project idea Projects Puzzle qualities Question of the day Questions Quiz Question Recruitment Recruitment Pattern Requirement Result Resume Reviews Screen Sizes Scripting Session Skills Software Software Engineering solved papers Source Code Speed time and distance SQL SSC story Stress Interview Study Material study tips submit resume Synonym TCS Tech Mahindra tech news Technical Books Technical Interview Testing thank you letter Thought Time Table TutC++ Unix questions asked in aptitude and inteviews for MCA UPSC verbal Web Designing Web Developer Website Development What to read while loop Wipro Writing Resume

Receive Quality Tutorials Straight in your Inbox by submitting your Email ID below.